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Abstract
Large Language Models (LLMs) have significantly impacted many facets of natural language processing
and information retrieval. Unlike previous neural approaches, the enlarged context window of these
generative models allows for ranking multiple documents at once, commonly called list-wise ranking.
However, there are still limits to the number of documents that can be ranked in a single inference of the
model, leading to the broad adoption of a sliding window approach to identify the 𝑘 most relevant items
in a ranked list. We argue that the sliding window approach is not well-suited for list-wise re-ranking
because it (1) cannot be parallelized in its current form, (2) wastes compute repeatedly re-scoring the best
set of documents as it works its way up the initial ranking, and (3) prioritizes the lowest-ranked items
for scoring rather than the highest-ranked items by taking a bottom-up approach. We investigate the
precision of recent list-wise rankers within a single inference and find that when few relevant documents
are found, it is preferable that these documents be at the start of a model’s context window. Motivated
by this finding and the shortcomings of a sliding window approach, we propose a novel algorithm that
partitions a ranking to depth 𝑘 and processes documents top-down. Unlike sliding window approaches,
our algorithm is inherently parallelizable due to the use of a pivot element, which can be compared to
documents down to an arbitrary depth concurrently. In doing so, we reduce the number of expected
inference calls by around 33% when ranking at depth 100 while matching the performance of prior
approaches across multiple strong re-rankers.
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1. Introduction

Until recently, neural approaches to ranking entailed the direct comparison of a document1

to only one or two other distinct texts at a time: either a “point-wise” comparison to the
query [1, 2] or a “pair-wise” comparison to a query and one other reference document [3]. Recent
developments in Large Language Models (LLMs) improve the natural language understanding
of transformer-based models and vastly increase the number of tokens a model can effectively
process compared to previous models [4, 5, 6]. These two improvements allow for a “list-
wise” ranking approach at inference time, where multiple documents can all be evaluated
simultaneously. The key benefit of such a list-wise approach is that the ranker is directly
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Figure 1: Bottom-up sliding window vs our top-down partitioning approach. Relevant documents are
colored blue. In the case of our approach, the pivot document marked red is identified in the first pass
and can be compared to other partitions concurrently with red arrows denoting the use of the pivot
element.

given context to judge each document by considering other potentially relevant documents.
State-of-the-art list-wise ranking approaches output a permutation of the original ranking
instead of explicit scores [7, 8]. The need to encode multiple documents and output multiple
tokens to determine document order makes these models computationally expensive due to the
quadratic complexity of attention, meaning that encoding multiple documents inherently takes
more time than current point-wise architectures.

In existing work, there is still a limit to the number of documents that can be ranked in a
single pass (typically around 20 documents [8]). Therefore, a larger ranking must be ‘batched’
before inference. A strategy is needed to select which passages to ‘batch’ together and how to
combine them, given that a batch permutation gives no indicator of absolute relevance across
the full ranking—only the relative ranking of documents within a batch. Due to the absence of
scores, this problem becomes closer to a classical selection or partitioning algorithm, such as
quick select [9].

The prevailing approach in list-wise ranking uses a sliding window over a chosen ranking
depth from bottom to top [7, 10, 8] as illustrated in Figure 1(a). By using an overlapping ‘stride’
over windows, documents that are initially lower in the ranking can bubble to the top (in
principle [10]). However, in this approach, the ranking of each window is dependent on the
processing of the documents below, leading to the repeated scoring of multiple documents to
enter the top-𝑘 and, therefore, an inefficient partitioning scheme. We alleviate this problem with
a rank-biased partitioning algorithm, which allows for parallel comparison of multiple batches
since each batch only depends on a ‘pivot’ from the first batch (Figure 1(b)). Additionally, noted
positional bias may be amplified by the repeated re-scoring of a potentially relevant document
to reach a high rank. Though prior work has investigated this effect under the effect of a
sliding window [10, 11], we investigate the in-window precision of list-wise rankers to better
understand their behaviour agnostic of chosen partitions.

Our key intuition relates to the purpose of such expensive rankers; such an approach is
inherently precision-orientated and, therefore, could find use in a broad set of domains that



rely on either an exact match or a small set of highly relevant documents [12, 13]. With such
applications in mind, we identify a pivot element at the 𝑘𝑡ℎ rank, which is then compared with
all documents down to an arbitrary depth. Any document considered more relevant than the
pivot element is necessarily a candidate for the top 𝑘 results. A final scoring is performed over all
candidates to yield a final top-𝑘. We additionally constrain the number of candidates that can be
selected in a given iteration to allow a budget for latency. In improving both the computational
expense and latency of list-wise rankers we not only aim to improve their application at scale but
make their use as annotators of training data more affordable as list-wise distillation becomes
an increasingly common component of state-of-the-art ranking models [8, 14, 15]. We outline
the following research questions that form the core contributions of this work.
RQ-1: How does the distribution of relevance within a single context window change

effectiveness?
We find that due to the list-wise nature of LLM-based rankers, they present a bias to list order

even within a single context window. Retrieval effectiveness measured by nDCG@10 can vary
greatly within a single window when comparing a reduced number of documents. We generally
observe a bias for a correctly ordered ranking, particularly in the case of a small proportion of
relevant documents. Notably, we find that a standard cross-encoder achieves nearly identical
performance to list-wise rankers over synthetic rankings.
RQ-2: How does efficiency trade-off affect performance in list-wise ranking?
Given our findings investigating RQ-1, we motivate our novel approach to list-wise ranking

that matches the performance of sliding window ranking and reduces the number of LLM
inferences while being parallelizable. We find that inferences can be reduced by up to 33%
with no significant loss in performance whilst additionally reducing the sequential dependence
between windows found in prior approaches, allowing parallelism to improve efficiency from
both a compute and latency perspective.
RQ-3: How sensitive is top-down partitioning to the relevance of the contents of the first

window?
We find that our new approach can be sensitive when the initial window of documents is

imprecise. This is due to our use of a pivot element, which can affect overall performance if
poorly chosen. However, we can alleviate this effect due to the design of our algorithm, which
allows for a budget over the number of candidate documents to collect, which can be increased
in the case of a weak first-stage retriever.
RQ-4: How does a larger candidate pool affect ranking performance?
In alleviating the effects of pivot element choice, we find that our algorithm successfully

recovers from a sub-optimal pivot element when the allocated ranking budget is improved,
increasing nDCG@10 by over two points. In doing so, we show that our algorithm can trade
off efficiency for effectiveness given a weaker initial retrieved list.

With this work, we aim to bring attention to the inefficiencies of current approaches and how
a task-specific approach can largely reduce the required inferences over computationally expen-
sive language models. We release artefacts and experiment code to ensure reproducibility.2

2Github Repository

https://github.com/Parry-Parry/TDPart


2. Background and Related Work

The Ranking Problem. A ranking is a permutation of a set ordered with respect to some
scoring function. Within retrieval, for a corpus 𝐶 = {𝑑1, … , 𝑑|𝐶|} and a user query text 𝑞, a
ranking model returns a top-𝑘 set of documents where 𝑘 ≪ |𝐶|, ordered by the probability of
relevance to 𝑞 [16].

Until the resurgence of neural networks and, more specifically, the transformer architec-
ture [17], ad-hoc search primarily involved term weights from exact lexical matches [18]; neural
architectures overcome the problem of exact term matching via soft-matching of terms using
pre-trained language models [19, 20]. Multiple variants of the transformer architecture are
applied in text retrieval, with most approaches falling into one of the following two paradigms.
The first is a bi-encoder, which separately encodes a query and document into a dense latent
space and executes a vector similarity search to determine relevance [1, 21], a variation of this
architecture, learned sparse retrieval uses sparse vectors frequently projected over the vocabu-
lary [22, 23]. The second, a cross-encoder, treats retrieval as a classification problem [2, 24, 25],
jointly encoding a query and document before outputting a relevance score for the pair. List-wise
ranking can be seen as a cross-encoder variant due to its jointly encoding queries and multiple
documents [7]. Though a list-wise loss criterion has been applied in Learn-To-Rank [26] before
neural retrieval, due to context window constraints, neural rankers were trained with point-
wise or pair-wise loss functions. Recently, approaches using both T5 [14] and ELECTRA [11]
architectures have applied list-wise loss criterions as larger batch sizes can be accommodated
in modern compute instances.
List-wise Ranking. List-wise ranking is the ranking of multiple documents in a single

inference step. We follow the notation convention of Tang et al. [27] in which an 𝑛-permutation
of an 𝑛-ranking 𝑅 = {𝑅𝑖}𝑛𝑖=1 is defined as 𝜎 ∶ {𝑑1, … , 𝑑𝑛} → {𝑑1, … , 𝑑𝑛}. Given 𝑅, a list-wise model
𝜃 outputs a permutation 𝜎 ordered by relevance to 𝑞. A neural approach generally performs
permutation in discrete space via the decoding of tokens to determine order. For an initial
ranking 𝑅 and query text 𝑞, 𝜎(𝑅) = PERMUTE(𝑅, 𝑞; 𝜃), where the permutation 𝜎 is generated
auto-regressively through greedy decoding; however, our approach is not constrained only to
methods applying autoregressive decoders. Sun et al. [7] first showed the capability of GPT
variants [5] as zero-shot list-wise rankers, with Ma et al. [28] achieving strong performance with
a different prompt. Multiple works then distilled GPT-based rankers into smaller architectures
in both a decoder-only [29, 8] and encoder-decoder setting [30], finding that the distilled
model could outperform its teacher with suitable data augmentation [8]. Zhang et al. [10]
then showed that comparable performance could be achieved without using the GPT API and
additionally, investigated position bias across multiple windows; we instead investigate in-
window precision to understand better the behaviour of list-wise rankers agnostic of a chosen
partitioning algorithm.

Current approaches use sliding windows over a ranking to allow for inference in the case that
the inclusion of all candidate documents would exceed the maximum context window of many
models without excessive truncation. These methods chose a partition size 𝑤where 𝑤 ≪ |𝑅| and
progressively re-rank results from bottom to top by taking strides over windows. These methods
effectively cannot be applied top to bottom as doing so provides an opportunity for highly ranked
documents to be penalised as opposed to finding relevant documents that are ranked lower by



a first-stage retriever, defeating the point of a cascading ranking pipeline. This naturally leads
to inefficient search due to the need to sequentially search over each partition from bottom to
top, particularly in the case of repeated re-ranking [8]. Recent work has attempted to partially
alleviate these inefficiencies by applying a “set-encoder” architecture [11], which can process
all documents in a single window; however, such an architecture requires annotated data from
larger list-wise rankers which still employ a sliding window as it outperforms a full list-wise
ranking, as such our work can not only improve efficiency in a search setting but allow for the
efficient annotation of training data for more efficient rankers. Meng et al. [31] instead apply
auxiliary models to dynamically adjust re-ranking depth conditioned on estimates of relevance
to improve efficiency by re-ranking a reduced number of documents, where this approach is
applied pre-inference, we instead employ a dynamic algorithm which allows early stopping
in the case of a suitable number of relevant documents being found, however, our work is not
independent of pre-inference approaches, and they could be combined to improve efficiency
within this paradigm. Beyond list-wise approaches, Qin et al. [32] proposed a zero-shot pair-
wise approach in which, much like a classic sorting algorithm, comparisons are made between
elements to produce a ranked list. This parallel with sorting algorithms led to an expansion of
this approach by Zhuang et al. [33], finding that efficiency and performance could be further
improved by taking inspiration from common sorting algorithms. Due to the pair-wise nature
of these approaches, under current architectures, such approaches are less efficient empirically;
however, they remain compelling due to the absence of an expensive training stage.

Dynamic Pruning. Our approach takes inspiration from classic dynamic pruning algorithms
in retrieval. The key notion is that one does not need to consider documents that have no
chance of entering the top-k during scoring. Such an idea has been applied to approximate a
top-𝑘 ranking over sparse indices in a document-at-a-time fashion [34]. For a document 𝑑 and
query 𝑞, the query-dependent score of 𝑑 can be expressed as:

𝒮(𝑑, 𝑞) = ∑
𝑡∈𝑞∩𝑑

𝛼𝑡𝑤(𝑡, 𝑑) (1)

where in Equation 1, 𝛼𝑡 is the importance of a term 𝑡within 𝑞 and 𝑤(𝑑, 𝑡) is the weight assigned
to 𝑡 within 𝑑. For each query term the upper bound UB𝑡 of its contribution to 𝑑 is bounded
by UB𝑡 ≥ 𝛼𝑡 𝑤(𝑑, 𝑡), an upper bound on the query-dependent score of a document 𝑑 is then
expressed as ∑𝑡∈𝑞∩𝑑 UB𝑡 ≥ 𝒮(𝑑, 𝑞). If this bound is lower than the current 𝑘th document, the
document cannot enter the top-𝑘; as such, the scoring of many documents can be cut short or
eliminated based on this estimation [35]. In recent years, dynamic pruning has been successfully
applied to neural approaches, including re-ranking [36] and learned sparse retrieval [37]. What
differentiates our algorithm for list-wise ranking is that we cannot make in-document or term-
at-a-time comparisons and, therefore, use an entire document text as a threshold.

3. Methodology

We now outline our methodology for investigating in-window precision for list-wise rankers
and our proposed algorithm.



3.1. Position and Relevance

Depending on an initial ranking, an order-sensitive re-ranker must be able to find relevant
documents throughout a ranked list regardless of initial position. When a window-based
approach is employed, an imprecise ranking may lead to the scattered distribution of relevant
documents contrary to the distillation data commonly used to train these list-wise rankers as
illustrated in Figure 1. As such, we consider how precision can be affected by both order and
relevance distribution. Due to this sensitivity, prior work has proposed the use of a cascading
process in which a list is repeatedly re-ranked to compensate for the initial imprecision of a
first-stage retriever [8]. We look to investigate this behaviour agnostic of any given algorithm
to diagnose the in-window effectiveness of list-wise rankers.

More concretely, we consider relevance binary for the purposes of this investigation, much
like in a Cranfield setting. A ranked list 𝑅 of size 𝑘 can be composed with a ratio 1

𝑟 denoting
the proportion of relevant documents within 𝑅. Given a set of relevant documents 𝐷+ and
non-relevant documents 𝐷−, we choose 𝑘

𝑟 elements from 𝐷+ and 𝑘
1−𝑟 elements from 𝐷−. Under

an order-insensitive ranker with oracle knowledge, it is clear that the measured performance
of 𝑅 would be monotonically increasing with 𝑟 agnostic of the ordering of 𝑅. However, we
posit that current list-wise rankers could show reduced robustness to ordering and that we can
better understand the mechanism of current approaches over an imprecise initial ranking in
investigating effectiveness under these conditions.

3.2. Proposed Algorithm

Given the order sensitivity of existing approaches, we consider the need for a relevant document
which initially lies at a low rank to be repeatedly re-ranked to reach the top of a ranking can
have negative effects when re-ranking an imprecise list and furthermore clearly shows the
inefficiency of a sliding window approach.

Our core idea is to remove the dependence of a sequence of partitions of a ranking on each
other. Currently, under a sliding window 𝑤with a stride 𝑠, dependencies prevent parallelism and
other efficiency improvements due to the bottom-up nature of such an approach. To improve
efficiency, we partition a ranking in a top-down fashion compared to a highly ranked pivot
element 𝑝 to select candidates under a budget 𝑏 for each iteration. At a high level, consider the
upper bounds described in Section 2; our approach instead uses a pivot document 𝑝 at rank 𝑘 as
a threshold as opposed to term-based thresholds. Agnostic of list-wise approaches, we assume
that implicitly, a document 𝑑 is scored with respect to 𝑞. If 𝒮(𝑞, 𝑑) < 𝒮 (𝑞, 𝑝) then 𝑑 cannot
enter the top-𝑘 ranking. In practice, we directly use the permutation of a set of documents to
determine the above inequality as opposed to exact scores, as if a document is ranked lower
than 𝑝, it is considered less relevant by a model.

As outlined in Algorithm 1, given a set of documents 𝐴𝑖−1 ⊆ 𝑅 being the previous iteration
or the full ranked list, we process the top-𝑤 candidates 𝐿 and take a pivot element3 𝑝 at rank
𝑘 with all elements above the pivot added to a candidate set 𝐴𝑖 with maximum size 𝑏, which
is modified over each iteration; all other elements are added to a backfill set 𝐵, which persists
throughout execution to retain all documents which are estimated to be less relevant than the

3we choose 𝑘 = 𝑤
2
for comparison to the commonly used stride of 5.



pivot. The remainder of the ranked list 𝑅 can be processed in parallel in partitions of size of
𝑤 − 1.

The pivot 𝑝 is prepended to the next set 𝐿, which is then ordered by model 𝜃 to find documents
ranked above 𝑝. Any elements of 𝐿 ranked above 𝑝 are added to 𝐴, and the remainder is added
to 𝐵. If no element in 𝑅 is greater than the current pivot, we know no element can enter the
top-𝑘; therefore, our top set is already sorted as 𝐿. If candidates are found, the algorithm is
executed on 𝐴𝑖 constrained to budget size 𝑏 (Algorithm 1 Line 14). For our main evaluation,
the candidate size equals the window size. Therefore, a single extra iteration is required after
traversing a full ranked list. Our algorithm incorporates the desirable rank bias of favoring the
top-ranked documents because it works top-down to select a candidate pool constrained by
budget 𝑏. As a document at rank 20 is more likely to be relevant than a document at rank 100,
when a set of 𝑏 candidates is found, we posit that there may be no need to search the remaining
partitions.

For |𝑅| > 𝑤, a sliding window approach always has a worst-case number of inferences,
inferences (𝑅) = |𝑅|

𝑠 − 1 which in practise could not be improved via early stopping due to the
the bottom to top application of a sliding window. As top-down partitioning does not use a
stride over a sliding window, our expectation over the number of inferences is a function of
the desired search depth, the window size, and the budget 𝑏. Window size beyond the top-𝑤 is
reduced due to the need for the pivot element to be included in each inference. As we do not
know how many documents will be considered more relevant than the pivot, identifying 𝑝𝑖 at
the beginning of the 𝑖th iteration, we define the set of possible ranking iterations 𝐴 as follows.
Given the 0th element 𝐴0 = 𝑅:

𝐴𝑖 = {𝐴𝑖 ∶ |𝐴𝑖| < 𝑏 ∧ ∀𝑑 ∈ 𝐴𝑖−1, rank(𝑑) < rank(𝑝𝑖−1)} (2)

We can then estimate a worst-case number of inferences by taking the sum of inferences over
all iterations defined in Equation 2. Empirically, this does not occur as the algorithm either
finds 𝑏 candidates before processing all partitions or the ranker is sufficiently precise to meet
the condition |𝐴𝑖| = 𝑘 − 1 early.

inferences (𝑅) =
|𝐴|
∑
𝑖=0

1 +
|𝐴𝑖| − 𝑤
𝑤 − 1

(3)

Equation 3 degenerates to inferences (𝑅) = 2 + |𝑅|−𝑤
𝑤−1 in the case of 𝑏 = 𝑤. We need a single

inference to find the initial pivot at each stage; we then have |𝐴𝑖| − 𝑤 documents remaining to
process with a reduced window size 𝑤 − 1 as we must account for the pivot element. We then
require a final inference to order the set of 𝑤 candidates. Though both a sliding window and
our algorithm are of 𝑂(𝑛) complexity, empirically, both early stopping and the lack of a stride
lead to reduced computation.



Algorithm 1: Top-Down Partitioning
Input: Candidate set: 𝐴𝑖−1, Backfill set: 𝐵, Query: 𝑞, Window size: 𝑤, Budget: 𝑏, Optimization

cutoff: 𝑐, List-wise ranker: 𝜃
Output: 𝜎(𝐴𝑖−1): 𝐴𝑖−1 ordered by relevance to 𝑞

1 begin
2 𝐿 ← {𝑑1, … , 𝑑𝑤, 𝑑 ∈ 𝐴𝑖−1} // First 𝑤 documents
3 𝑅 ← 𝐴𝑖−1 − 𝐿 // Remaining documents
4 𝐿 ← PERMUTE(𝐿, 𝑞; 𝜃) // Order current partition
5 𝑝 ← 𝐿[𝑘] // Take pivot element
6 𝐴𝑖 ← 𝐿[1 ∶ 𝑘]
7 𝐵 ← 𝐵 ∪ 𝐿[𝑘 + 1 ∶ |𝐿|]
8 while |𝐴𝑖−1| > 0 and |𝐴𝑖| < 𝑏 do
9 𝐿 ← {𝑑1, … , 𝑑𝑤−1, 𝑑 ∈ 𝑅}

10 𝑅 ← 𝑅 − 𝐿
11 𝐿 ← PERMUTE(𝑝 ∪ 𝐿, 𝑞; 𝜃)
12 𝐴𝑖 ← 𝐴𝑖 ∪ 𝐿[1 ∶ 𝑝] // Elements > 𝑝
13 𝐵 ← 𝐵 ∪ 𝐿[𝑝 + 1 ∶ |𝐿|] // Elements < 𝑝
14 return (|𝐴𝑖| = 𝑘 − 1) ? 𝐴𝑖 ∪ 𝑝 ∪ 𝐵 ∶ pivot(𝐴𝑖) ∪ 𝑝 ∪ 𝐵

4. Evaluation

We now describe the evaluation of top-down partitioning for list-wise re-ranking and our
observations from empirical evidence.

4.1. Experiment Setup

We outline the following research questions to assess our novel algorithm:
RQ-1: How does the distribution of relevance within a window change effectiveness when
order changes?
RQ-2: How does efficiency trade-off affect performance in list-wise ranking?
RQ-3: How sensitive is top-down partitioning to the relevance of the contents of the first
window?
RQ-4: How does a larger candidate pool affect ranking performance?

4.2. List-Wise Ranking Approaches.

We compare approaches to ranking with sequence-to-sequence list-wise rankers. We do not
consider variants of pairwise re-ranking [32, 33] as their efficiency and performance were found
to be inferior to the following approaches [29].
Single Window (Single): Re-ranks the top-𝑤 documents from a first stage ranking where 𝑤 is
window size. Assumes sufficient recall within the top-𝑤 of a ranked list retrived by a first stage
model.
Sliding Window (Sliding): For a given window size 𝑤 and stride 𝑠 re-ranks documents to
depth 𝐷 using a sliding window from bottom to top.
Top-Down Partitioning (TDPart): Our approach outlined in Algorithm 1. Performs an initial
search over a top-𝑤 window to find a pivot at cutoff 𝑘 before searching to depth 𝐷 comparing
each window to the pivot.



4.3. Datasets

We conduct our core experiments on the MSMARCO corpus [38], a collection of over 8.8 million
documents commonly used to train neural ranking models. As we are primarily concerned with
the precision of the top-𝑘 re-ranked documents, we choose to evaluate our approach on the
TREC Deep Learning 2019 and 2020 test queries [39, 40], which have densely annotated queries
in contrast to the official MSMARCO DEV set [38], we refer the reader to the original model
papers for an overview of each models performance on sparse benchmarks. To evaluate the
robustness of our approach in an out-of-domain setting we take a subset of the BEIR benchmark
sets [41], due to the greater computational expense of current list-wise rankers multiple sparsely
annotated test sets would be infeasible under our compute budget, as such we choose test
sets with a smaller set of densely annotated topics namely, TREC Covid [42] and Touche [43].
TREC COVID is a test benchmark with a corpus of 171k texts and 50 annotated queries with
topics focusing on health information relating to the COVID-19 virus. Touche is an argument
retrieval benchmark with a corpus of 382k texts and 49 annotated queries with topics relating to
both societally important and everyday information needs which require arguments to provide
evidence for a given perspective.

We evaluate nDCG@1, 5, 10, and P@10 using the ir_measures library; following standard
MSMARCO conventions, we consider a relevance judgment of 2 or more as relevant and a
relevance judgement of 1 for other datasets. Our algorithm aims to reduce the inferences
required when applying list-wise rankers while maintaining effectiveness, so we conduct
equivalence tests (paired TOST) with 𝑝 < 0.05 and a 5% bounds between our methods and
baselines. Additionally we report the average number of inferences required per query for both
in- and out-of-domain experiments and the number of possible parallel inferences.

4.4. Models

We apply our approach to multiple state-of-the-art list-wise rankers that execute the PERMUTE
function described in Section 3. RankGPT [7], which directly prompts GPT variants4, a decoder-
only distilled ranker RankZephyr [8] based on the Zephyr-7B [44] architecture and LiT5 [30]
based on a T5 [20] fusion-in-decoding model [13]. We allow a maximum of 4096 tokens per
input in all cases. We also employ an oracle approach with access to test relevance judgments
returning a permutation sorted by these judgments to ensure our algorithm can remain robust
as underlying models improve. Due to tie breaks inherent when sorting by discrete relevance
judgments, precision can vary. As our approach is fundamentally rank-biased, we investigate
the effect of first-stage rankers on downstream precision. We re-rank BM25 [18], a common
lexical model, and we use the Terrier implementation with default parameters [45]; SPLADE++
ED [23], a teacher-distilled learned sparse model and RetroMAE [46], a teacher-distilled bi-
encoder using MAE pre-training over a brute force index. In experiments addressing RQ-1, we
additionally contrast RankZephyr with monoELECTRA [25], a strong point-wise cross-encoder
to control for order-sensitivity in our comparisons.

4We use GPT 3.5 (gpt-3.5-turbo-0125) due to budget constraints



4.5. In-Window Precision

As described in Section 3.1, we look to investigate how both ranking order and relevance
distribution affect the in-window effectiveness of list-wise rankers. In investigating RQ-1, we
define a ranking data generation process with oracle knowledge, which generates ranked lists
given a ratio of relevant and non-relevant documents. To reduce the noise in this process, given
the existence of false negatives in MSMARCO, we persist in a ranking between ratios within
the generation process, only adding relevant documents as the ratio 𝑟 increases. Using human
relevance judgements for a test collection, we partition all judged documents 𝐷 into relevant,
𝐷+, and non-relevant, 𝐷−, sets. We filter queries5 such that all evaluated queries have at least
𝑘 − 1 judgements in both 𝐷+ and 𝐷− for |𝑅| = 𝑘 to allow for the smooth interpolation between
majority relevant and majority non-relevant ranked lists. For experiments with MSMARCO, we
combine Deep Learning 2019 and 2020 queries, yielding 53 compatible queries for |𝑅| = 20. For
out-of-domain experiments, 50 TREC COVID queries and 16 Touche queries are valid. Naturally,
we use the full set of queries when performing retrieval effectiveness evaluation outside of this
synthetic setting.

To persist a ranked list, for an initial ratio 𝑟0, we take documents from the sets described
above. When generating for the next ratio 𝑟1,where 𝑟1 > 𝑟0, we find the number of new relevant
documents we need to include via 𝑛 = 𝑟1 − 𝑟0. We remove 𝑛 non-relevant documents from 𝑅 and
add 𝑛 documents from 𝐷+, ensuring that random noise is reduced and we can clearly measure
the effect of adding new relevant documents across a given sample.

To investigate order-sensitivity, we again utilise oracle knowledge to sort by relevance
judgement; on MSMARCO, this is a value in the range [0, 1, 2, 3] and generally, for BEIR datasets,
a value in the range [0, 1, 2]. We sort each ranking in ascending (ASC), descending (DESC) and
random order (RANDOM). In doing so, we investigate how the behaviour of these models varies
with lists, which could be present at various points in the re-ranking process. For example,
when re-ranking a strong first-stage, the top-k is likely to be well ordered, approximating
descending order with a majority of relevant documents present; however, when re-ranking
a weaker first stage, when ranking lower ranked documents, a window may be composed of
only a few relevant documents in either random or ascending order. As such, our synthetic
conditions can have parallels with real ranked lists.

To prevent bias in the initialisation of each ranked list, we aggregate performance over 5
initial rankings for each query. We investigate rations in the range [0.2, 0.4, 0.6, 0.8], where a
smaller ratio denotes a reduced proportion of relevant documents. We assess window sizes
of 5 and 20 to observe how these conditions vary when a reduced number of documents are
observed.

5. Results and Discussion

We now present and discuss our findings with respect to research questions outlined in Section
4.1.

5We use the same filtered set of queries for different window sizes to allow comparisons, i.e. both window sizes
sample from the pool satisfying |𝑅| = 20.



(a) MSMARCO (𝑤 = 5) (b) ToucheV2 (𝑤 = 5) (c) COVID (𝑤 = 5)

(d) MSMARCO (𝑤 = 20) (e) ToucheV2 (𝑤 = 20) (f) COVID (𝑤 = 20)

Figure 2: Effectiveness of a list-wise and point-wise ranker varying the proportion of relevant documents
and the ranked order measuring nDCG@10 acrossMSMARCODeep Learning, Touche and TRECCOVID
queries. 𝑤 represents window size or, in this case, the number of documents ranked at once.

5.1. In-Window Effectiveness

In Figure 2, we present the effectiveness of RankZephyr6 compared to monoELECTRA (order-
invariant), controlling for the proportion of relevant documents (Ratio) and the ordering of the
ranking. Addressing RQ-1, Figures 2 (a), (b), and (c) indicate that for a reduced list length, there
is a clear distinction between orderings suggesting a greater sensitivity to relevant documents
being placed at the beginning of a ranking. Additionally, observe that RankZephyr, when
re-ranking from a ranked list in descending order, consistently outperforms monoELECTRA;
however, random order is aligned with monoELECTRA in-domain, and performance varies
out-of-domain.

In contrast, we observe that in Figures 2, RankZephyr presents minimal order sensitivity.
Additionally, it is notable that monoELECTRA performs near-identically to RankZephyr under
this synthetic setting. Given that a greater margin is observed between list-wise and point-wise
methods out-of-domain, additionally observed by Schlatt et al. [11], we consider that “inter-
document” interactions, may be unnecessary when priors are suitably modelled in-domain, with
list-wise inference provided appropriate context when the target domain is not fully captured
in a point-wise setting; however, clearly, list-wise distillation can improve performance, but
list-wise inference may lead to a bias to rankings similar to that of a teacher model as discussed
below in Section 5.2.

Coupled with this finding, we observe that descending order is preferred in both in- and out-

6Similar trends were consistently observed for other list-wise rankers



Table 1
Comparing ‘Single Window’, ‘Sliding Window’, and ‘TDPart’ (ours) approaches on TREC Deep Learning
benchmarks. We report TOST (p<0.05), equivalence to our approach denoted with underline. We report
mean inferences with the mean number of inferences run in parallel in parentheses.

SPLADE ++ ED RetroMAE BM25

nDCG@1 nDCG@5 nDCG@10 P@10 nDCG@1 nDCG@5 nDCG@10 P@10 nDCG@1 nDCG@5 nDCG@10 P@10

Model Mode DL19 DL20 DL19 DL20 DL19 DL20 DL19 DL20 N. Inf. DL19 DL20 DL19 DL20 DL19 DL20 DL19 DL20 N. Inf. DL19 DL20 DL19 DL20 DL19 DL20 DL19 DL20 N. Inf.

Oracle Single 0.977 1.000 0.936 0.977 0.890 0.916 0.765 0.748 1.0 (1.0) 0.953 0.981 0.925 0.934 0.863 0.874 0.749 0.696 1.0 (1.0) 0.907 0.935 0.823 0.811 0.719 0.715 0.560 0.489 1.0 (1.0)
Oracle Sliding 0.984 1.000 0.972 0.995 0.957 0.978 0.872 0.822 9.0 (1.0) 0.992 1.000 0.968 0.993 0.948 0.958 0.863 0.800 9.0 (1.0) 0.953 0.981 0.924 0.928 0.879 0.880 0.788 0.702 8.9 (1.0)
Oracle TDPart 0.984 1.000 0.972 0.995 0.956 0.976 0.872 0.820 7.0 (5.0) 0.992 1.000 0.967 0.993 0.945 0.958 0.853 0.800 7.1 (5.1) 0.946 0.981 0.913 0.925 0.858 0.872 0.765 0.687 7.4 (5.4)

Zephyr Single 0.849 0.855 0.808 0.831 0.777 0.795 0.672 0.637 1.0 (1.0) 0.810 0.867 0.792 0.815 0.758 0.778 0.665 0.607 1.0 (1.0) 0.713 0.784 0.681 0.689 0.625 0.628 0.500 0.435 1.0 (1.0)
Zephyr Sliding 0.849 0.849 0.791 0.826 0.777 0.802 0.691 0.631 9.0 (1.0) 0.810 0.867 0.796 0.818 0.769 0.785 0.686 0.607 9.0 (1.0) 0.713 0.846 0.715 0.770 0.707 0.722 0.637 0.535 8.9 (1.0)
Zephyr TDPart 0.833 0.852 0.794 0.828 0.780 0.805 0.679 0.639 7.4 (5.4) 0.826 0.864 0.797 0.814 0.771 0.788 0.686 0.619 7.2 (5.2) 0.736 0.858 0.731 0.772 0.681 0.723 0.577 0.543 7.4 (5.4)

LiT5 Single 0.802 0.827 0.795 0.797 0.763 0.763 0.665 0.598 1.0 (1.0) 0.787 0.858 0.773 0.776 0.739 0.748 0.653 0.585 1.0 (1.0) 0.748 0.799 0.685 0.678 0.626 0.604 0.507 0.413 1.0 (1.0)
LiT5 Sliding 0.802 0.818 0.798 0.771 0.774 0.763 0.691 0.600 9.0 (1.0) 0.756 0.855 0.770 0.781 0.741 0.750 0.665 0.578 9.0 (1.0) 0.787 0.833 0.751 0.735 0.723 0.700 0.640 0.531 8.9 (1.0)
LiT5 TDPart 0.787 0.827 0.795 0.791 0.766 0.768 0.684 0.604 6.3 (4.3) 0.740 0.867 0.763 0.798 0.743 0.761 0.684 0.591 6.6 (4.6) 0.787 0.836 0.724 0.746 0.687 0.679 0.593 0.489 5.9 (3.9)

GPT 3.5 Single 0.833 0.787 0.783 0.775 0.760 0.752 0.644 0.607 1.0 (1.0) 0.841 0.827 0.802 0.789 0.741 0.744 0.630 0.576 1.0 (1.0) 0.698 0.765 0.647 0.666 0.602 0.588 0.484 0.393 1.0 (1.0)
GPT 3.5 Sliding 0.837 0.781 0.786 0.779 0.754 0.766 0.642 0.617 9.0 (1.0) 0.802 0.799 0.779 0.752 0.740 0.727 0.649 0.561 9.0 (1.0) 0.709 0.809 0.727 0.704 0.686 0.654 0.588 0.480 8.9 (1.0)
GPT 3.5 TDPart 0.802 0.806 0.779 0.788 0.753 0.752 0.642 0.598 7.4 (5.4) 0.837 0.796 0.787 0.758 0.736 0.739 0.637 0.578 7.2 (5.2) 0.686 0.802 0.693 0.708 0.654 0.637 0.556 0.459 7.5 (5.5)

of-domain settings for lower proportions of relevant documents, suggesting that a well-ordered
ranking can further improve performance. We draw a parallel with repeated re-ranking over
BM25 proposed by Pradeep et al. [8], in which initially, a relevant document may be missed as
it may happen to be in a low position in the ranking and its rank is not sufficiently increased
in the current sliding window. However, when re-ranking is again performed, the position of
that document may have been moved such that the document rank is sufficiently improved to
consider it at an earlier position in the context window, aligning with descending order for a
low ratio as discussed above7.

When applying top-down partitioning, we consider that this effect may be reduced by placing
the pivot element used for candidate selection at the first position in the ranking. Assuming
that a ranked list is suitably well-ordered to allow the chosen pivot to be partially relevant,
this should align with our findings that descending order is preferred for a reduced number of
relevant documents.

5.2. In-Domain Effectiveness

Inferences are Empirically Reduced. Table 1 presents our core results over TREC Deep
Learning queries, contrasting our algorithm with existing approaches. Rows 1-3 show an oracle
ranker over each first stage. We observe statistical equivalence with a sliding window approach
while consistently reducing the number of inferences required to achieve this performance. In
doing so, we show that the comparison of a pivot element as opposed to a strided window is
sufficient for list-wise inference.

Addressing RQ-2, as can be observed in the last column of Table 1, when applying state-of-
the-art rankers, we again observe a reduced number of inferences across all cases when applying
top-down partitioning, as expected by the analysis of our algorithm. Additionally, our approach
exceeds or matches a sliding window’s performance measured by nDCG@10 in 79% of cases,

7This observation may be partially attributed to causal attention, which, in the case of descending order, the model
can contextualise non-relevant documents with respect to already observed relevant documents however we leave
verification of this conjecture to future work.



including RankGPT, which is zero-shot and known to have variable output [29]. Additionally,
observe that under an oracle setting, our algorithm is more efficient depending on the precision
of a first-stage retriever, showing that we can improve efficiency agnostic of the effectiveness of
an underlying estimator. When utilising both decoder-only and encoder-decoder architectures,
the number of inferences required does not show a linear trend, which could be attributed to
the ability of each model to suitably identify relevant documents given their position within a
current window; however, in each case, we see that our algorithm leads to at maximum .4 more
inferences than an oracle setting on average per query. Crucially, the latency of our approach
would be dramatically reduced due to the majority of inferences being parallelizable, as observed
in the bracket of the final column of each Table. Particularly in the case of LiT5, which is based
on the smaller T5 architecture, this could lead to greater potential for list-wise inference to
scale under a greater number of concurrent queries. Due to the reduced window size required
by our algorithm, we frequently observe a smaller final window as in our experiments, depth
100 does not cleanly divide by 19 (𝑤 − 1); simply searching to an approximate depth which has
the factor 𝑤 − 1 would further reduce inferences with minimal effect on performance.

Sensitivity to Initial Ranking. Addressing RQ-3, when applying our algorithm to strong
first stages such as RetroMAE and SPLADE++ ED, it can be observed that in all cases, our
approach is either statistically equivalent or outperforms the strongest baseline, being either
a single window in the case that the top-𝑤 documents are already sufficiently precise or a
sliding window. Additionally, our approach generally outperforms a sliding window in terms
of nDCG@5; however, we note that nDCG@1 is variable. We generally achieve statistical
equivalence with a sliding window. This observation shows that our approach provides an
effective trade-off between precision and latency whilst outperforming a single window where a
sliding window fails. Of note is the statistical equivalence of all approaches when using a strong
first stage and list-wise ranker; however, when considering a list-wise ranker, one would want
to maximize performance such that a deeper search is essential. We propose that the multiple
scoring of documents in a sliding window approach, which can ‘miss’ relevant documents due
to the need for multiple scoring of the same document as observed by Zhang et al. [10] which
may inversely pull non-relevant documents into the top-𝑘, explaining performance degradation
over a single window as can be observed particularly under RankZephyr. Alternatively, when
applying a weaker first stage, such as BM25, though our approach improves over a single
window, we observe non-equivalent performance in P@10 when applying our approach versus
a sliding window. A likely cause of this degradation is that due to the imprecision of the
first 𝑤 elements of a BM25 ranking, the chosen pivot element is insufficiently relevant to
distinguish suitable candidates. Therefore, the candidate pool is polluted with partially or
non-relevant items as the pivot is not sufficiently relevant to provide a challenging threshold.
However, our approach more robustly ranks documents in contrast to a sliding window, as
shown by improvements in nDCG@1 and nDCG@5, providing further evidence that non-
relevant documents are accidentally ‘bubbled’ up to high ranks. Applying a list-wise ranker
with our approach saves computation; therefore, allocating a small fraction of these savings to
a stronger first stage, such as SPLADE++ ED, is worthwhile.
Ablation of Budget. Addressing RQ-4, we conduct an ablation of our approach to assess

how a larger budget and, therefore, the opportunity to re-rank the top-k multiple times can
affect retrieval performance. We assess budgets in the range [20, 30, 40, 50]. In Figure 3, observe



(a) SPLADE++ ED (b) RetroMAE (c) BM25

Figure 3: Ablation of Budget across each first-stage ranker on the TREC Deep Learning 2019 test
queries.

that for precise first stages, small improvements in effectiveness occur when the budget is
increased apart from RankGPT, which exhibits high variance. Additionally, we find that larger
values of the budget parameter can exceed reported performance on Deep Learning queries
from prior works; however, we do not tune this value on a validation set, and any improvement
is insignificant over previous state-of-the-art methods. Akin to the multiple re-ranking stages
proposed by Pradeep et al. [8] in which the previous ranking by the list-wise ranker is again
re-ranked; however, we find a budget increase somewhat unnecessary given a first-stage dense
or sparse neural retriever as performance gains are insufficient compared to the increased
number of inferences required for a larger budget. However, in the case of BM25, we see that
increasing the budget improves performance across all models, particularly in the case of LiT5,
where nDCG@10 is improved from 0.687 to 0.715 when the budget is increased. Generally,
we observe improvements of around 2 points of nDCG@10, allowing RankGPT to reach the
performance of LiT5 when re-ranking SPLADE++ ED. We attribute this to the low precision of
BM25, meaning that a greater budget is required to recover from a poor initial pivot value such
that a progressive re-ranking is helpful. This explains small albeit insignificant degradation
in nDCG@10 performance compared to a sliding window in Table 1. Under our algorithm,
progressive re-ranking does not require full re-ranking and is instead adaptive to the initial
candidate set, improving efficiency.

5.3. Out-of-Domain Effectiveness

Table 2 presents the out-of-domain performance of list-wise rankers using different partitioning
algorithms. We observe again that our approach is statistically equivalent to a sliding window
approach under an oracle setting but note that unlike MSMARCO, a single window is generally
insufficient in terms of recall. Our approach improves over a single window on TREC COVID
in 2 of 3 models and, on Touche, outperforms a sliding window approach in terms of nDCG@10
and P@10 using both RankZephyr and LiT5 whilst reducing inferences by over 33%. We observe
reduced performance assessed over TREC COVID using LiT5 compared to a sliding window
approach, potentially showing that given the large training process of such rankers, without
interventions (such as those applied in RankZephyr, e.g. order shuffling) to discriminate non-
relevant documents from a pivot is more challenging. Over Touche both a sliding window and
our approach generally degrade over a single window suggesting that these models cannot



Table 2
Comparing ‘Single Window’, ‘Sliding Window’, and ‘TDPart’ (ours) approaches on out-of-domain
benchmarks. We report TOST (p<0.05), equivalence to our approach denoted with underline. We report
mean inferences with the mean number of inferences run in parallel in parentheses.

TREC COVID Touche

Model Mode nDCG@1 nDCG@5 nDCG@10 P@10 nDCG@1 nDCG@5 nDCG@10 P@10 N. Inf.

Oracle Single 0.980 0.946 0.874 0.778 0.959 0.814 0.615 0.402 1.0 (1.0)
Oracle Sliding 1.000 0.989 0.983 0.974 1.000 0.977 0.877 0.673 9.0 (1.0)
Oracle TDPart 1.000 0.989 0.975 0.954 1.000 0.977 0.876 0.671 6.5 (4.5)

Zephyr Single 0.890 0.813 0.754 0.632 0.480 0.383 0.356 0.265 1.0 (1.0)
Zephyr Sliding 0.870 0.842 0.805 0.702 0.490 0.342 0.318 0.222 9.0 (1.0)
Zephyr TDPart 0.910 0.854 0.804 0.696 0.480 0.369 0.340 0.241 5.8 (3.8)

LiT5 Single 0.820 0.754 0.715 0.608 0.429 0.366 0.340 0.255 1.0 (1.0)
LiT5 Sliding 0.850 0.763 0.744 0.644 0.439 0.330 0.323 0.239 9.0 (1.0)
LiT5 TDPart 0.820 0.769 0.725 0.618 0.418 0.337 0.331 0.251 5.2 (3.2)

GPT 3.5 Single 0.880 0.779 0.718 0.598 0.459 0.374 0.325 0.237 1.0 (1.0)
GPT 3.5 Sliding 0.910 0.833 0.774 0.656 0.357 0.322 0.308 0.235 9.0 (1.0)
GPT 3.5 TDPart 0.900 0.849 0.784 0.682 0.276 0.308 0.272 0.198 6.5 (4.5)

separate relevant and non-relevant documents when searching to a greater depth, this effect is
most pronounced in RankGPT which presents large degradation in terms of nDCG@10. Though
our approach is a step towards more robust ranking using list-wise rankers, performance
in contrast to a single window is still reduced, and such cases should be studied further to
compensate for domain shift. The lack of statistical equivalence between approaches over
list-wise rankers would suggest that greater work is required to improve their robustness and,
therefore, allow greater recall. We note a clear trend that stronger models are more effective
when applying a pivot-based approach and generally outperform the exhaustive sliding window
while providing a sufficient trade-off between performance and efficiency.

6. Conclusion

This work introduces a novel algorithm for list-wise ranking, which, while improving efficiency,
matches or exceeds prior work in and out-of-domain. In investigating the precision of such
rankers agnostic of a particular partitioning algorithm, we further motivate our approach
using a pivot element chosen from highly ranked documents. Using a pivot as opposed to
a strided window, we can rank documents to an arbitrary depth with a reduced number of
inferences and in parallel. This finding is essential in improving the efficiency of list-wise
approaches as they find applications in both ranking and data annotation for more efficient
rankers. Our proposed approach is statically equivalent to prior work in an oracle setting,
suggesting that as underlying models improve, our algorithm can continue to improve efficiency
with no performance degradation. Our approach is most effective with strong first-stage
retrievers, where a single high-quality pivot element can be used for efficient candidate selection.
In contrast, weak first stages might require a larger budget allowed by our algorithm for
progressive re-ranking to overcome the initial imprecision. We identified limitations in out-of-



domain retrieval tasks, where discrimination between relevant and non-relevant documents
becomes more challenging at greater re-ranking depths. This highlights the need for further
research on improving the robustness of list-wise rankers, particularly for generalizability across
different domains. In summary, we show that current approaches are sub-optimal, and further
consideration must be given to the efficiency of list-wise ranking at an algorithmic level.
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